(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__fib1(X1, X2)) →+ cons(activate(X1), n__fib1(activate(X2), n__add(activate(X1), activate(X2))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / n__fib1(X1, X2)].
The result substitution is [ ].
The rewrite sequence
activate(n__fib1(X1, X2)) →+ cons(activate(X1), n__fib1(activate(X2), n__add(activate(X1), activate(X2))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,0].
The pumping substitution is [X1 / n__fib1(X1, X2)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fib(N) → sel(N, fib1(s(0'), s(0')))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
fib(N) → sel(N, fib1(s(0'), s(0')))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X
Types:
fib :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
sel :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
s :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
0' :: 0':s:n__add:n__fib1:cons
cons :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
activate :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons
gen_0':s:n__add:n__fib1:cons2_0 :: Nat → 0':s:n__add:n__fib1:cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sel,
add,
activateThey will be analysed ascendingly in the following order:
activate < sel
add < activate
(8) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
n__add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
add(
X1,
X2) →
n__add(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
activate(
X1),
activate(
X2))
activate(
n__add(
X1,
X2)) →
add(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
fib :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
sel :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
s :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
0' :: 0':s:n__add:n__fib1:cons
cons :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
activate :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons
gen_0':s:n__add:n__fib1:cons2_0 :: Nat → 0':s:n__add:n__fib1:cons
Generator Equations:
gen_0':s:n__add:n__fib1:cons2_0(0) ⇔ 0'
gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) ⇔ s(gen_0':s:n__add:n__fib1:cons2_0(x))
The following defined symbols remain to be analysed:
add, sel, activate
They will be analysed ascendingly in the following order:
activate < sel
add < activate
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add(
gen_0':s:n__add:n__fib1:cons2_0(
n4_0),
gen_0':s:n__add:n__fib1:cons2_0(
b)) →
gen_0':s:n__add:n__fib1:cons2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
add(gen_0':s:n__add:n__fib1:cons2_0(0), gen_0':s:n__add:n__fib1:cons2_0(b)) →RΩ(1)
gen_0':s:n__add:n__fib1:cons2_0(b)
Induction Step:
add(gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, 1)), gen_0':s:n__add:n__fib1:cons2_0(b)) →RΩ(1)
s(add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b))) →IH
s(gen_0':s:n__add:n__fib1:cons2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
n__add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
add(
X1,
X2) →
n__add(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
activate(
X1),
activate(
X2))
activate(
n__add(
X1,
X2)) →
add(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
fib :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
sel :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
s :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
0' :: 0':s:n__add:n__fib1:cons
cons :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
activate :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons
gen_0':s:n__add:n__fib1:cons2_0 :: Nat → 0':s:n__add:n__fib1:cons
Lemmas:
add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) → gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:n__add:n__fib1:cons2_0(0) ⇔ 0'
gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) ⇔ s(gen_0':s:n__add:n__fib1:cons2_0(x))
The following defined symbols remain to be analysed:
activate, sel
They will be analysed ascendingly in the following order:
activate < sel
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(13) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
n__add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
add(
X1,
X2) →
n__add(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
activate(
X1),
activate(
X2))
activate(
n__add(
X1,
X2)) →
add(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
fib :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
sel :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
s :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
0' :: 0':s:n__add:n__fib1:cons
cons :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
activate :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons
gen_0':s:n__add:n__fib1:cons2_0 :: Nat → 0':s:n__add:n__fib1:cons
Lemmas:
add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) → gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:n__add:n__fib1:cons2_0(0) ⇔ 0'
gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) ⇔ s(gen_0':s:n__add:n__fib1:cons2_0(x))
The following defined symbols remain to be analysed:
sel
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sel.
(15) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
n__add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
add(
X1,
X2) →
n__add(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
activate(
X1),
activate(
X2))
activate(
n__add(
X1,
X2)) →
add(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
fib :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
sel :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
s :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
0' :: 0':s:n__add:n__fib1:cons
cons :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
activate :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons
gen_0':s:n__add:n__fib1:cons2_0 :: Nat → 0':s:n__add:n__fib1:cons
Lemmas:
add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) → gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:n__add:n__fib1:cons2_0(0) ⇔ 0'
gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) ⇔ s(gen_0':s:n__add:n__fib1:cons2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) → gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
n__add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
add(
X1,
X2) →
n__add(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
activate(
X1),
activate(
X2))
activate(
n__add(
X1,
X2)) →
add(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
fib :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
sel :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
s :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
0' :: 0':s:n__add:n__fib1:cons
cons :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__fib1 :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
n__add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
add :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
activate :: 0':s:n__add:n__fib1:cons → 0':s:n__add:n__fib1:cons
hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons
gen_0':s:n__add:n__fib1:cons2_0 :: Nat → 0':s:n__add:n__fib1:cons
Lemmas:
add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) → gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:n__add:n__fib1:cons2_0(0) ⇔ 0'
gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) ⇔ s(gen_0':s:n__add:n__fib1:cons2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) → gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)